Assessing the North American Supply Chain for Traction Drive Inverters, Motors and Batteries for Class 3-8 Hybrid Electric and Plug-In Electric Commercial Vehicles

Christopher Whaling, PI

Richard Holcomb III, Manager Steve Johnson, Senior Researcher Michael Willis, Senior Policy Analyst

Project ID # ELT089

Synthesis Partners, LLC

For delivery Tuesday, June 19, 2018 at 8:30AM at US Department of Energy's Annual Merit Review (AMR) meeting.

This slide does not contain any proprietary, confidential, or otherwise restricted information.

SYNTHESIS PARTNERS, LLC

Caveats

- ✓ Nothing stated in this brief is an official viewpoint of the US Department of Energy or any other official US government entity.
- ✓ Synthesis Partners makes no warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information disclosed herein.
- ✓ This is an <u>interim product and findings will change</u>, esp. as market conditions change and new data is developed.

Overview

Timeline

- Start: October 2017
- End: September 2018
- Percent complete in April 2018: 50%

Budget

- Total project funding
 - DOE share: 100%
- Funding received in FY17: \$229,959
- Funding received in FY18: \$229,959

Barriers

- "Enable reliable hybrid electric, plug-in hybrid and range-extended electric, and battery electric vehicles with performance, safety, and costs comparable to or better than advanced conventional vehicle technologies." (USDRIVE Partnership Goal 1 (Nov. 2016)).
- Accurate information about Class 3-8 Electric Commercial Vehicles (ECVs) and their supply chains in North America.
- Actionable intelligence on R&D gaps that affect Autonomous Vehicles (AVs) and Class 3-8 ECV PE, batteries and motors in North America.

Partners

Interactions/ collaborations

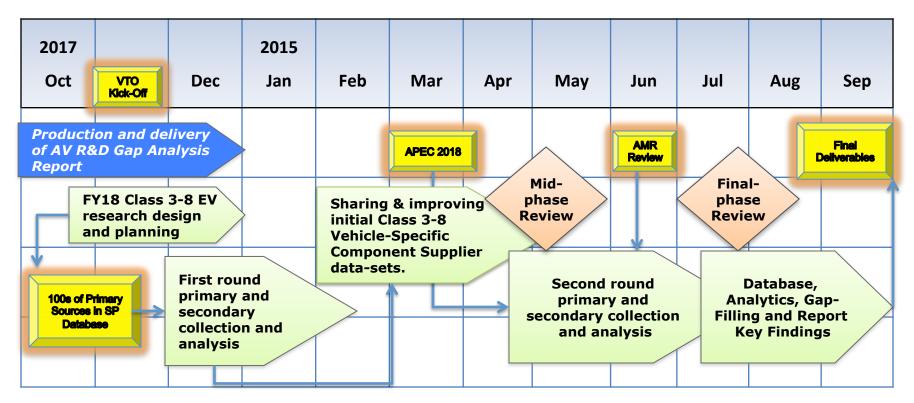
- Interactions with 100s of primary sources @ OEMs, Tier 1-4s, R&D organizations & Universities.
- US DRIVE Electrical/ Electronics Technical Team members.
- NREL and ORNL (MD-HD EV Assessments)
- Project lead: Synthesis Partners, LLC

Relevance: Progress Toward Objectives

Main focus of this update is covered below in green.

Overall Objectives (FY18)

- Produce report on results of past (FY17) Autonomous Vehicle R&D gap analysis work.
- ◆ Targeted collection and analysis regarding the North American (NA) Class 3-8 Medium Duty-Heavy Duty (MD-HD) ECV supply chain, including batteries, inverters and motors.
- ◆ Share and collaborate with related VTO MD-HD ECV assessment activities.


Progress toward objectives during this period (October 2017-April 2018)

- ◆ Issued report: "R&D Gap and Trend Analysis for Autonomous and Connected Vehicles: On Connectivity, Sensors and Sensor Systems," (November 2017). Available to the public.
- ◆ 340+ individuals contacted (Dec 2017-March 2018) to elicit information regarding NA supply chain for MD-HD vehicles and associated power electronics, motors and batteries.
- Produced initial, detailed Class 3-8 component supplier data-sets and formatted for entry into database.
- ◆ Shared data-sets with NREL and ORNL in February 2018 to collaborate on MD-HD research.

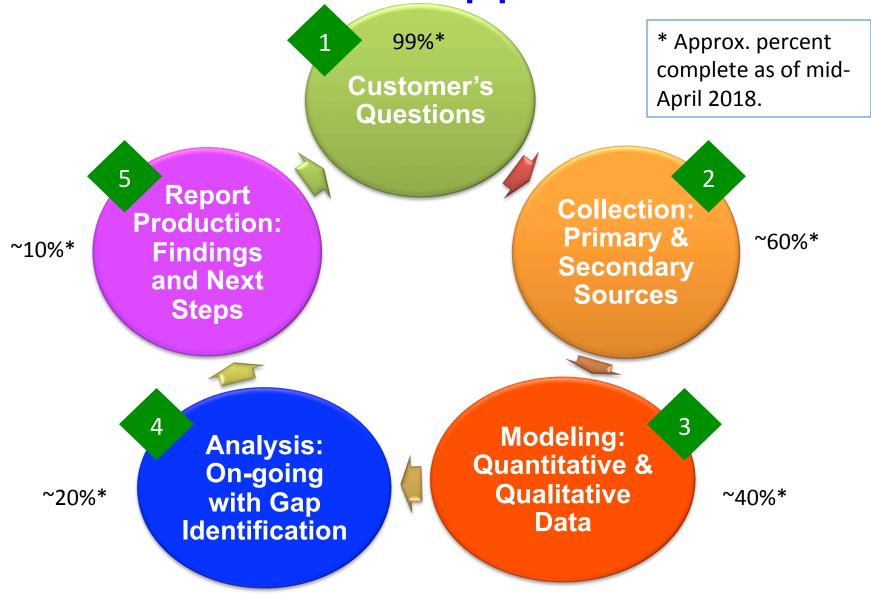
Impact

- Independent, integrated assessment of SME views on gaps in autonomous and connected vehicle R&D domains.
- Decision support via development of comprehensive database of quantified information on NA Class 3-8 HEV, EV or PHEVs, including vehicle-specific suppliers of batteries, inverters and motors.
- Enabling increased accuracy and precision in analysis of NA supply chain for PE, motors, batteries, autonomous, connected and MD-HD vehicles.

Project Milestones

Go No/Go Decision Points: **Challenges/Barriers:**

Ongoing assessment, mid- and end-of-phase review.

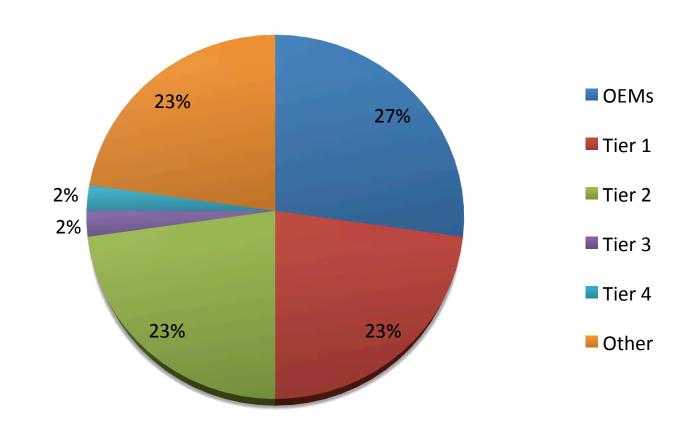

Time to process and analyze large amounts of heterogeneous data; accessibility of primary sources both in-person and electronically; navigation to highest-value data via source confidentiality agreements; opportunities to drill-down with SMEs

on specific Class 3-8 ECV R&D gaps.

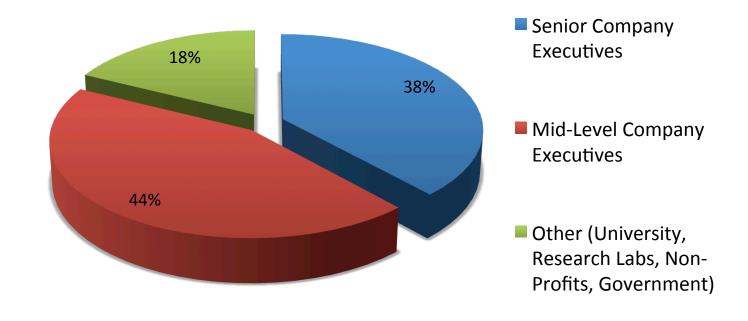
Key Deliverables:

Presentations, data-sets and concise report on key findings.

Technical Approach


Technical Approach Details

- Completed December 2017: Integrate FY17 findings and produce public report on R&D gap analysis in automated and connected vehicles. [Public Report available.]
- Ongoing, Jan. April 2018, main focus of these slides: English-language primary and secondary research to develop a baseline for the most recent calendar year, of quantitative and qualitative data on:
 - i. Number, make, model, manufacturer of Class 3-8 HEV & PEV commercial vehicles on the road in North America (NA: U.S., Canada, Mexico) for the most recent full year public data is available.
 - ii. For the population of vehicles identified in #1 [a], for the same year, the suppliers of drive-train inverters, converters, motors, and batteries (which can include cells).
 - iii. Ranking of suppliers identified in #2 [b], by revenue and numbers of units shipped (as publicly available, or reasonably inferred).
- Next step, starting in May 2018: Employ the information and insights obtained through the above research to:
 - iv. Identify the gaps, constraints and bottlenecks in the NA supply chain for the traction drive electrification components as covered in #1-3, given the information that is available publicly and on a confidential basis.


Technical Accomplishments

- Through mid-April 2018:
 - Per Approach Step #2: Collected 60% of total information we expect to collect; high value gap-filling data pending.
 - Per Approach Step #3: Inputted and modeled approximately 40% of the collected information into an emerging database of Class 3-8 vehicle-specific suppliers of batteries, inverters, motors and other components – focused on North America.
 - Per Approach Step #4: Analysis very early, just 20% complete.
 - Per Approach Step #5: Production phase just beginning.
- In-depth collection and data entry continues, while analysis and production just beginning at time of submission of these slides.
- Specifically, completed primary and secondary-source research includes:
 - √ 500+ phone calls made and e-mails executed.
 - √ 1,000+ electronic sources reviewed.
 - ✓ 220 individual company or organizational contacts identified as having relevant experience or information for this project.

Distribution of Organizational Contacts, by Type (As of April 6, 2018)

Distribution of Primary Sources, by Organizational Role (As of April 6, 2018)

Technical Accomplishments cont'd.

- In progress cont'd. (through mid-April 2018):
 - √ 340 individual executives identified within the 220 organizations and companies, with relevant experience or information for this project.
 - √ 50+ in-depth technical conversations, with SMEs in materials, components, semiconductors, vehicle electrification and related topics at APEC 2018.
 - √ 100+ rows in the database on supply chain and gaps (details in next slides). Focus of next slides.
 - ✓ More than 10 initial, gaps identified in Class 3-8 NA supply chain. Further analysis required before briefing on this gap information.

Emerging Class 3-8 PHEV and EV Vehicle and Component NA Supply Chain Database

- Data on suppliers of motors, inverters, batteries and other components, including data on:
 - 1. Supplier
 - 2. Year of Information Sourcing
 - 3. Tier of Supplier (for this activity)
 - 4. Supplier HQ Address, Website
 - 5. Supplier Parent Company
 - 6. Supplier Main Focus
 - 7. Class 3-8 (MD-HD) Vehicle that the Company Supplies
 - 8. Years that this Class 3-8 Vehicle Was/Is/Planned to Be in Production
 - 9. Number of Class 3-8 Vehicles that Company Has Supplied
 - 10. Number of Class 3-8 Vehicles that Company Has Supplied That Are In Operation in North America (NA)
 - 11. ...Other data

Emerging Class 3-8 Supplier Database

Company	Year of Information Sourcing	Tier of Company, For this Activity	Company HQ Address	Company Website	Company Parent	Company Focus
Caterpillar	2107	OEM	Peoria, IL	https://www.caterpillar.com	Publicly-owned	mfg. heavy-duty equipment
Chanje Energy, Inc.	2017	OEM	Burlingame, CA	http://www.chanje.us/	JV between FDG (China) and Smith Electric Vehicles	mfg. electric trucks
Chanje Energy, Inc.	2017	OEM	Burlingame, CA	http://www.chapie.us/	JV between FDG (China) and Smith Electric Vehicles	mfg. electric trucks
Chanje Energy, Inc.	2017	OEM	Burlingame, CA	http://www.chanje.us/	JV between FDG (China) and Smith Electric Vehicles	mfg. electric trucks
Chanje Energy, Inc.	2017	OSM	Burlingame, CA	http://www.chanje.us/	JV between FDG (China) and Smith Electric Vehicles	mfg. electric trucks
Chanje Energy, Inc.	2021	OEM	Burlingame, CA	http://www.chanje.us/	JV between FDG (China) and Smith Electric Vehicles	mfg. electric truck As well as Motors,
Complete Coach Supplied to this MD/HD \			cation of Inverters	o tor this IVIII/HI) Vehicle I#	I Inverter Production Capacity for D/HD Vehicle CLASS (# or estimate)	Batteries, O Component Inverter MD-HD R&D Gap
Daimler Buses North America (DBNA)	2013	OEM	Greensboro, NC	https://daimler- trucksnorthamerica.com/	Daimler Trucks North America	hybrid-electric bus mfg.
Daimler Buses North America (DBNA)	2012	OEM	Greensboro, NC	https://daimler- trucksnorthamerica.com/	Daimler Trucks North America	hybrid-electric bus mfg.
Delphi Technologies	2012		London, UK	http://www.delphi.com	Delphi	Mfg. inverters, converters, control modules for hybrid and electric propulsion systems for medium- an heavy-duty vehicles

Emerging Component Supplier Data

- Motors, Inverters or Batteries Supplied to Class 3-8 Vehicles
 - Example: Allison Hybrid H 40 EP and H 50 EP Drive Unit
 - 430-900 VDC 160 kW continuous 3-phase AC motor weighing 165 lbs (75 kg)
 - 3rd generation energy storage system (ESS3)
 - ESS3 uses nickel metal hydride (NiMH) battery cell technology from PEVE (f/k/a Panasonic EV Energy)
 - Class 3-8: EV and Hybrid City Buses: Gillig, New Flyer (see next slide)
- Annual Production Location, Volume or Capacity re: Class 3-8 Vehicles
 - Example: Allison (HQ: Indianapolis)
 - Allison H 40 EP & H 50 EP began production in Q4 2003
 - Allison H 3000 production scheduled to begin in Q4 2013
 - Approximately X# (data still under development) total hybrid propulsion systems supplied into US; with majority operating in US city transit bus applications.
- Gap or Constraint relevant to the Class 3-8 NA Supply Chain
 - Example: Tier 1
 - "Battery Life this is a huge issue that will impact cost; Battery Disposal need to develop an acceptable solution; Battery Charging -- need to decide if multiple approaches will continue to be pursued or if a standard approach, or at least limiting to 1-3 approaches to ensure wide-spread availability of charging options."

Emerging Vehicle-to-Component Data

- Example: A123 (Livonia, MI)
 - Selected components supplied: Lithium Ion-Nickel Manganese Cobalt battery;
 Lithium Ion Cylindrical and Prismatic Cell Battery Packs
 - Class 3-8 applications: New Flyer Xcelsior XE40 Bus; BAE Systems HybriDrive Series Propulsion System; Navistar E-Star Class 3 (2010-2013); Orion VII Hybrid Electric Bus (in service since 2007); Smith Electric Class 5-7 Newton electric truck.
- Example: Allison Transmission (Indianapolis, IN)
 - Selected components supplied: Traction driver inverter; Allison H40/50 EP (both generator and motor).
 - Class 3-8 Applications: Gillig Low Floor BRT Bus (Allison EP 40/H 40 EP) (2004-present); Gillig Low Floor BRT Trolley Bus (Allison Parallel diesel-electric hybrid powertrain); Nova LFS HEV bus (H40 EP); Nova LFS Arctic HEV (H50 EP); Motor Coach Industries D4500 CT Hybrid Commuter Coach (Allison Ep50 EP).
- Example: BAE Systems (Endicott, NY)
 - Selected components supplied: AC traction drive induction motor; BAE HDS200 and HDS300 full series electric propulsion systems (aka BAE HybriDrive). Power flows in series from engine to generator to traction motor; alternator system; adaptable to all electric.
 - Class 3-8 Applications: Nova LFS HEV bus; Nova LFS Arctic HEV; Orion VII HEV bus;
 Gillig Low Floor Series Buses w/ diesel-electric propulsion.

Class 3-8 HEV, EV and PHEV North American Initial Market Assessment*

DAIMLER

Engineering Design

Integrated E-**Drive Systems**

^{*} Companies can overlap across categories. This is an interim view for illustration only.

Interim Findings

- How many Class 3-8 HEV and EV commercial vehicles are on the road in North America?
 - 27,847 and counting (covers all vehicles delivered, in use or retired, as of 2016).
 Source: Federal Transit Authority (FTA) "Revenue Vehicle Inventory," Baseline 2016, sorted by SP for EV and HEV wheeled vehicles only.
 - 5,774 and counting (covers vehicles in operation in NA only, does not include prototypes or retired vehicles).
 Source: SP primary source statements, as of April 2018, covering battery EV and HEV Class 3-8 commercial vehicles in operation in North America.
- Final answer in September 2018.
 - Based on Class 3-8 vehicle models; manufacturers; date of entry; date of retirement; date of planned entry; time-in-use; and (as feasible) average lifetime miles per active vehicle model.
- Please contact Christopher Whaling at cwhaling@synthesispartners.com with any data or information.

Public Report

Based on prior year's technical research, publishing work completed in December 2017.

 Title: "R&D Gap and Trend Analysis for Autonomous and Connected Vehicles: On Connectivity, Sensors and Sensor Systems," (November 2017).

Available to the public, please request a copy from:

Christopher Whaling cwhaling@synthesispartners.com

37 Gaps Identified in Autonomous and Connected Vehicle Research

Research on autonomous and connected vehicles research, sensors (incl. LiDAR) and sensor system developments in North America for the purpose of identifying R&D gaps that VTO may invest in.

- 37 in total R&D gaps in autonomous and connected vehicle research identified as relevant to VTO interests.
- 11 of 37 Gaps identified in "Vehicle Sensors and Intelligence Materials"
 - Definition: Hardware for low-cost, high-performance, energy dense data storage, processing and communication on the vehicle; includes LiDAR gaps.
- 11 of 37 Gaps identified in "Vehicle-to-Vehicle (V2V) Communications and Intelligence Networking"
 - Definition: Hardware for low-cost, high-performance, energy dense, secure and reliable communications, sensors and sensor fusion.
- 15 of 37 Gaps identified in "Other R&D Collaboration Opportunities"
 - Definition: Policy-technology and standards development opportunities to address gaps in the autonomous vehicle and V2X (vehicle-to-anything) connectivity space.

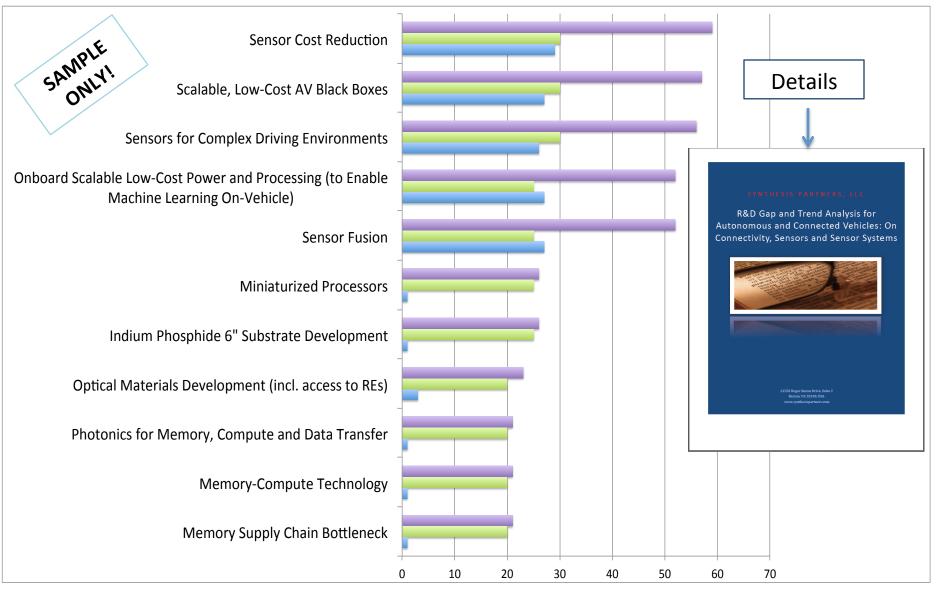
evel of Interdisciplinary RDTE & Policy

Gaps Increasing as Level of Interdisciplinary RDT&E Increases

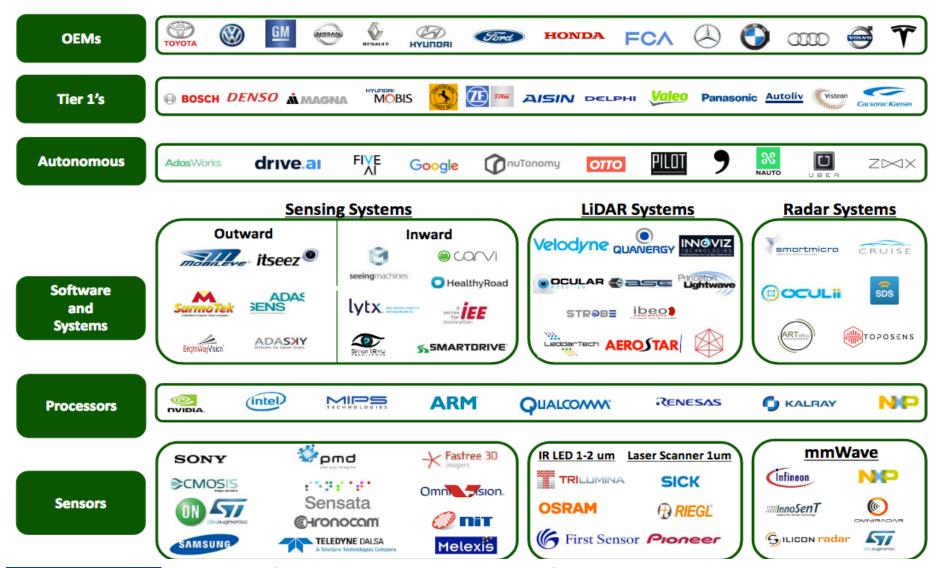
Vehicle Sensors and Intelligence Materials

Mission critical information production, storage, processing analyzing and communications (MCIPSPA&C).

Vehicle-to-Vehicle (V2X) Communications and Intelligence Systems


Vehicle-to-human-to-drive-relevant sensor or system MCIPSPA&C.

Other R&D
Collaboration
Topics


V2X MCIPSPA&C.

Hardware ... → Hardcoded Hardware Accelerators for Software ... → Software

Vehicle Sensors and Intelligence Materials Gaps

Autonomous Vehicle Players: Relevant to the Future Class 3-8 Market

Coordination and Collaboration

- Close coordination and collaboration with 100s of industry, OEMs,
 Tier 1-4, universities and other subject matter experts on both public and proprietary basis.
- In-depth engagement with select sources at conferences (e.g., APEC 2018) to work to identify gaps and technology development opportunities in support of VTO and USDRIVE partnership goals.
- Engagement with DOE federal research labs, e.g.; SP shared early data-sets on MD-HD market and component suppliers with NREL and ORNL for discussion and feedback in February 2018.

Project Summary

- Reviewer Comments: This project was not reviewed in FY17.
- FY18 research work is at mid-point at time of production of these slides.
 - Interim findings will be vetted and gaps filled via select MD-HD sources and analysts over next period.
- FY18 research is fundamentally collaborative in that it builds directly on prior and new source relationships and findings.
 - Responsibility of SP is to maintain an increasingly deep pool of researcher, OEM, Tier 1-4 and other relationships with varied, independent viewpoints, to help address VTO decision-needs and objectives.
 - Our job is to contribute to understanding "on both sides of the table" → by accessing and reporting varied, independent viewpoints and best-available data on the NA supply chain.
 - SP does everything possible to maintain open lines of communication to encourage new thinking, new ideas and a diverse range of actionable information and guidance is produced for VTO decision-makers.
- Collaboration and coordination, including with USDRIVE-EETT and VTO stakeholders, is a key ingredient to project success.

Thank you for your interest.

We welcome your feedback.

POC:

PI, Christopher Whaling

Email: cwhaling@synthesispartners.com

Technical Background Information

Defining Class 3-8 Vehicles

Vehicle Classifications

Class is determined by the gross vehicle weight rating (GVWR) of the vehicle.

Light Duty Trucks

- Class 1 This class of truck has a GVWR of 0 to 6,000 pounds (0 to 2,722kg).
- Class 2 This class of truck has a GVWR of 6,001 to 10,000 pounds (2,722 to 4,536 kg).
- Class 3 This class of truck has a GVWR of 10,001 to 14,000 pounds (4,536 to 6,350 kg).

Medium Duty Trucks

- Class 4 This class of truck has a GVWR of 14,001 to 16,000 pounds (6,351 to 7,257 kg).
- Class 5 This class of truck has a GVWR of 16,001 to 19,500 pounds (7,258 to 8,845 kg).
- Class 6 This class of truck has a GVWR of 19,501 to 26,000 pounds (8,846 to 11,793 kg).

Heavy Duty Trucks

- Class 7 This class of truck has a GVWR of 26,001 to 33,000 pounds (11,794 to 14,969 kg).
- Class 8 This class of truck has a GVWR of greater than 33,001 pounds (14,969 kg), and includes all tractor trailers.

Source: "Commercial Motor Vehicle Classification", Martin Murray, 11-18-16, https://www.thebalance.com/commercial-motor-vehicle-classification-2221025; Accessed 10-11-17.

Class Three: 10,001 to 14,000 lbs.

Class Four: 14,001 to 16,000 lbs.

City Delivery

Conventional Van

Landscape Utility

Class Five: 16,001 to 19,500 lbs.

Bucket

City Delivery

Large Walk In

Class Six: 19,501 to 26,000 lbs.

Beverage

Rack

School Bus

Single Axle Van

Source: https://www.afdc.energy.gov/data/10381; Accessed 11/16/17.

Class Seven: 26,001 to 33,000 lbs.

City Transit Bus

Furniture

High Profile Semi

Home Fuel

Medium Semi Tractor

Refuse

Class Eight: 33,001 lbs. & over

Heavy Semi Tractor

Cement Mixer

Dump

Refrigerated Van

Fire Truck

Semi Sleeper

Tour Bus

